Çözüldü Trigonometry - Euclid's Formula for The Right Triangle

Konusu 'TOEFL - IELTS - SAT - GRE Hazırlık' forumundadır ve Honore tarafından 7 Ekim 2018 başlatılmıştır.

Yüklüyor...
  1. Honore

    Honore Yönetici

    Mesajlar:
    2.593
    Beğenileri:
    354
    Cinsiyet:
    Bay
    Meslek:
    Müh. (Elk./Bilg.)
    Given a right triangle ABC with the right angle at the vertex A; in terms of the angle ABC, what is the height |AH| to the hypotenuse which is four units long?
    https://www.facebook.com/photo.php?fbid=2187409994918291&set=gm.548247088940907&type=3&theater&ifg=1

    ABC = α
    |BH| = y
    |CH| = 4 - y
    Based on Pythagoras' Theorem and using Euclid's right triangle properties;
    |AH|^2 = |BH|·|CH| = y(4 - y) ]....(I)
    tanα = |AH| / y ⇒ y = |AH|·cotα....(II)
    Substituting the equation (II) to (I), |AH|^2 = |AH|·(cotα)[ 4 - |AH|·(cotα) ] and simplifying;
    |AH| = 4cotα - |AH|·[ (cotα)^2 ], organizing to leave |AH| alone on the left side;
    |AH| = 4cotα / [ 1 + (cotα)^2 ], switching to sine and cosine functions;
    |AH| = (4cosα / sinα) / [ 1 / (sinα)^2 ] and after the final simplification;
    |AH| = 4·sinα·cosα, using the trigonometric identity sin2θ = 2·sinθ·cosθ
    |AH| = 2sin2α

Sayfayı Paylaş